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Modelling climate change impacts on water resources have been widely acknowledged to 

have various complexities. These complexities are due to the complex, dynamic and non-

linear characteristics of the changes in atmospheric, climatological and hydrological 

processes. These changes are majorly as a result of human activities. Assessment of the 

potential impacts of these changes with the goal of planning adaptation strategies has given 

birth to numerous methodologies and approaches. However, uncertainty still occurs at almost 

every phase of the modelling process; from the development and downscaling of emission 

scenarios to the use of hydrological models. This paper reviews some of the current methods 

employed in hydrological modelling of climate change impacts and identifies the key sources 

of uncertainty inherent at each stage of the hydrological modelling process. Strategies that 

would incorporate of all sources of uncertainty while ensuring complementary modelling are 

suggested. These strategies would help in achieving meaningful progress with respect to the 

development of adaptive water resource systems, and also positively influence decision-

making by relevant stakeholders.  
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models, uncertainty 

Introduction 

The knowledge of weather and climate has always been of high importance to the global 

community, as it is upon them that the activities and life of humans on earth depend. It has been 

widely accepted over the past decades that human activities are changing the composition of the 

atmosphere and consequently, climate at both global and regional levels are affected. The 

dominant cause of current climate change is our past and current emissions of greenhouse gases 

(GHGs), in particular carbondioxide (IPCC 2007). Among the effects of these emissions are 

changes to energy concentrations received by the planet from the sun, as this energy is trapped 

for a longer period, making the planet go warmer. 

The phenomenon of climate change is of great concern for hydrology as this change is 

expected to affect water availability and its use significantly, with wide range implications even 

beyond the water sector. Increasing temperatures are having profound effect on evaporation, 

thereby affecting water storage in the atmosphere. This in turn affects the frequency and intensity 

of rainfall events, its seasonal and geographic distribution, as well as its variability from year to 

year (Knoesen et al. 2009). In reality, many of the most serious impacts of climate change on 
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non-water areas are mediated via water (Zhu and Ringler 2010). The impacts of climate change 

on other processes associated with water include changes in soil moisture, irrigation water 

demands, heat wave episodes and meteorological and hydrological droughts. These have 

multiplier effect on the aforementioned processes. 

Studies have further found changes in climate. Chiew (2006) stated that temperature and 

precipitation can have direct consequences on the quantity of evaporation and also on both 

quantity and quality of run-off component. These changes will however affect the quantity and 

quality of water supply for domestic and industrial use. In addition, aquatic life in wetlands and 

ecological reserves will be affected as air and water temperatures rise and change. This change 

may either lead to migration of certain species in order to survive or extinction of some. 

Due to the impacts of changing climate on both natural and social environment, the need for 

adequate planning into the future and putting in place adaptive measures is of crucial importance. 

Numerous studies have been carried out to understand the current and future impacts of climate 

change. Different approaches have been employed by researchers in understanding these impacts 

and making projections into the future. The impact modelling process of climate change involves 

many phases which include (i) the development of GHG emission scenarios, (ii) the use of 

Global Climate Models (GCMs) to project possible future climates, (iii) downscaling techniques 

and (iv) the use of hydrological models to simulate hydrological impacts of climate change. 

However, there exist some uncertainty in each phase of the modelling processes (Xu et al. 

2005), and these are due to the complex nature of the processes. Such uncertainty generate grey 

areas in the interpretation of future hydroclimatological projections. The main purpose of this 

paper is to review the current methods employed in hydrological modelling and the sources of 

uncertainty inherent in each phase of the hydrological modelling processes. 

Uncertainty Linked To GHG Emission Scenarios 

The Intergovernmental Panel on Climate Change (IPCC) developed long-term scenarios which 

have been widely used in the analysis of possible climate change, its impacts and options to 

mitigate climate change (IPCC 2007). These future levels of GHG emissions were developed 

using “storylines” (Nakicenovic et al. 2000), and are products of a very complex, ill-understood 

dynamic system, driven by forces such as demographic change, socio-economic development 

and rate and direction of technological change. These scenarios are used as a basis for the 

assessment of climatic change and in GCM initialization by modelers. 

The special report on emission scenarios (SRES) (IPCC 2013) comprise of four narrative 

storylines designated A1, A2, B1 and B2. These emission scenarios are usually based on an 

internally consistent and reproducible set of assumptions which centers on the fundamental 

relationships and driving forces of change (Figure 1). The understanding of these relationships 

and driving forces of change are derived from both historical and present situations. However, 

the complex nature involved in deriving and understanding these driving forces make accurate 

predictions of these emission scenarios virtually impossible (IPCC 2013). This generates 

difficulty in translating and understanding the linkages between driving forces and quantitative 

inputs for scenario analysis. As a result, uncertainty arise in the interpretation of the scenario 

storylines as translated by individual modelers carrying out climate change impact assessment 

studies. Other factors that contribute to emission scenario uncertainty include the choice of 

storylines for the purpose of climate change simulation and the occurrence of events considered 

to be “rare future” events, which might produce outcomes that are fundamentally different from 

those produced by SRES model runs (Nakicenovic et al. 2000). 
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Figure 1. SRES scenario storylines considered by IPCC (Schulze et al. 2011). 

Recently, efforts have been directed towards reducing these emission scenario uncertainty as 

numerous researchers have developed interest in assessing the degree of uncertainty and its 

impacts on hydrological processes. The norm is to employ multiple storylines and multi-model 

approaches in future scenario analyses. A foundation for the use of scenario modelling as a tool 

for integrated water resource management was laid in Angola (Andersson et al. 2006). To 

account for the uncertainty in future GHG emissions, data from GCMs forced with two 

contrasting GHG emission scenarios (A2 and B2) were used. As such, the range of future GHG 

concentration in the atmosphere between these two scenarios may encompass much of the 

uncertainty in the future global cycles of carbon and other GHGs. Results showed that 

simulations from both emission scenarios were close to the baseline conditions for the 

simulations of hydroclimatological variables in all the GCMs employed. Though simulations 

showed clear tendency for all the models to simulate reduced precipitation and flow, the 

magnitude of change for both scenarios differ across selected future time-slices. It was concluded 

that irrespective of the fact that the model system provided a good representation of historical 

monitored hydrological conditions, uncertainty as a result of differences in magnitudes  of 

change between the scenarios were high, which further opens up the need for further work at 

reducing emission scenario-related uncertainty. Results obtained from Olsson et al. (2011) were 

also in firm agreement with that of Andersson et al. (2006), as two sets of projections among the 

twelve used in their study differed across the four IPCC emission scenarios employed. The initial 

monthly projections differed substantially, although latter projections showed close agreement. 

The authors submitted that the IPCC emission scenarios employed contributed to the differences 

in hydrological impacts in the uncertainty assessment study. 

In summary, the accurate prediction of emission scenarios is relatively impossible and is 

therefore a source of uncertainty (Galavi and Shui 2012), as results from the use of IPCC 

emission scenarios may indicate widespread projections depending on the specific scenarios 

used. Consequently, it is not only important to employ different scenarios, but also to identify the 

most influential ones (Olsson et al. 2011). The need for a comprehensive understanding of the 

relationships between GHGs and its driving forces is also of high importance, so is the provision 

of updates as regards improvement in the development of GHG emission scenarios. Following 

the conceptualization of the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) 
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(Taylor et al. 2012), which entails a new set of coordinated model experiments, it is expected 

that the implementation of CMIP5 would help facilitate the reduction of uncertainty inherent in 

future climate change simulations and impact assessment studies. 

Uncertainty Linked To Global Climate Models (GCMs) 

Global Climate Models (GCMs) are used to simulate the present climate in order to estimate 

future climatic change at global scales. GCMs use equations which are the basis of complex 

computer programs to simulate the complex interactions between the atmosphere, oceans and 

biosphere (Graham et al. 2011). The interactions are dependent on natural and anthropogenic 

emissions which are estimated through emission scenarios. GCMs use emission scenarios as a 

founding measure in their generation of future climatological parameters that are in turn used to 

force the hydrological impact models. However, certain discrepancies may occur in the 

generation of climatological parameters in GCMs. These discrepancies are majorly due to 

imperfect representations in the topography and climate processes in GCMs, as well as 

computation limitations, which arise from the coarse resolution (approximately 200-300km grid 

squares) of GCMs. The coarse resolution limits the direct use of their outputs in impact models 

which are generally employed regionally at scales of 10-50km (Knoesen et al. 2009). 

Nowadays, downscaling techniques are employed to reduce the conflicts generated by the 

performance of GCMs at the regional partial scales. However, studies have found that a large 

percentage of the uncertainty in regional climate change simulations are connected to the GCM 

used for deriving the information (Hawkins and Sutton 2009). This is because results from 

GCMs are influenced by various factors which contribute to uncertainty. One major factor is that 

large-scale features of the originating GCMs are preserved and can still be traced in subsequent 

phases of the impact modelling process. As a result, GCMs are now being considered as a major 

contributor to climate change signal at finer temporal and spatial scales (Déqué et al. 2007). 

A major source of GCM uncertainty that has been widely accepted in climate change studies 

is the choice of GCM employed. Each GCM has its unique and specific features with respect to 

process descriptions and parameterizations (internal structure), initialization, as well as spatial 

and temporal resolutions. Jiang et al. (2012) assessed the temporal variability of flood frequency 

to flood drivers across multiple time-scale using 16 GCMs. It was found that most of the GCMs 

employed lacked the ability to produce observed monthly precipitations patterns, while few 

simulated low-frequency variability. They concluded that current GCMs do not adequately 

capture multi-scale temporal variability of precipitation, even though they showcased some 

degree of potentiality in capturing long-term monthly mean. Booij (2005) simulated the impacts 

of climate change on river discharge in the Nile Basin using 3 GCMs with different spatial 

resolutions. All the GCMs supplied climatological datasets for the same period based on two 

emission scenarios. Results showed no much agreement between the different GCM-SRES 

combinations and future trends. The differences between the observed and simulated spatio-

temporal representations of climatological forcing point to the fact that irrespective of the 

downscaling and bias correction procedures applied to the GCM outputs, large-scale features of 

the GCMs used remain evident in the projections made. These are clear indications of 

uncertainty as a result of choice of GCMs. Therefore, the choice of GCM should be considered a 

major factor when carrying out impact assessment studies, in order to reduce overall uncertainty 

in climate change impact asessments. 

Another source of uncertainty linked to GCMs is related to their process of initialization, 

which have been found to affect estimated near-future changes in climate (Olsson et al. 2011). 
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Kay et al. (2009) investigated the degree of uncertainty related to climate change impacts on 

flood frequency in two catchments in England. Six different sources of uncertainty were 

analyzed. Results found that GCM initial conditions accounted for a more significant portion of 

the uncertainty, if the results of extreme GCM simulations are excluded. Il-Won et al. (2012) in 

their flood frequency analysis established that uncertainty due to GCM initialization have great 

influence on near-future changes or projections. The GCM structure was attributed to uncertainty 

in shorter flood frequency change (e.g., 2 and 5-year flood). This further unveils GCM 

initialization uncertainty especially as it relates to the estimation of near-future changes in 

climate. 

It can be concluded that the application of GCMs is a major source of uncertainty in climate 

change impact modelling; as uncertainty develop from the choice of GCM employed to the 

processes involved such as its spatial and temporal resolution, initialization and structural 

construct. Therefore, adequate knowledge of the merits, excesses and drawbacks of the GCM 

would facilitate uncertainty reduction in GCM use. In addition, further studies directed towards 

the use of multiple GCMs would help identify the inherent characteristics of various GCMs. 

Uncertainty Linked To Downscaling Techniques 

As ealier discussed, the difference in model resolution between GCMs and hydrological impact 

models generate some discrepancies if GCM outputs are employed at regional scales. Hence, 

there is need to convert GCM outputs into local meteorological variables required to achieve 

reliable modelling of hydroclimatological processes. The process of converting GCM outputs for 

use at regional and local scales is termed “downscaling”. The primary objective of downscaling 

is to address the scale mismatch between coarse resolution GCM output and regional or local 

catchment scales required for climate change impact assessment and hydrological modelling 

(Fowler and Wilby 2007). Dynamical and empirical downscaling techniques are two primary 

methods used for downscaling GCM outputs, and uncertainty linked to them are discussed in the 

following sections. 

Uncertainty Linked To Dynamical Downscaling Technique 

Dynamical downscaling involves the use of regional climate models (RCMs) which are of higher 

resolution when compared to GCMs. RCMs simulate climate features dynamically at resolutions 

of about 50km or less using GCM data as boundary condition (Fung et al. 2011). RCMs gives 

better representation of the physical processes or small scale features of the atmosphere such as 

extreme climate events and regional scale climate anomalies or non-linear effects, when 

compared to what is obtainable in GCMs. One major process of employing RCMs in climate 

modelling is to nest them with GCMs. Many researchers have conducted impact modelling 

studies by setting up a number of GCMs and RCMs in a matrix (Graham et al. 2011; Olsson et 

al. 2011; Kienzle et al. 2012). However, some limitations have been identified in the use of 

RCMs. They include the propagation of the uncertainty that originates from the driving GCM, 

which create some biases that are mostly pronounced in the RCM numerical representations of 

major climatic variables such as precipitation and temperature. This shows that 

misrepresentations of regional and local parameters still occur despite the use of RCMs; as the 

choice of RCM or its parameterization scheme goes a long way to determining the degree of 

uncertainty (Kjellström et al. 2011). Therefore, there is need to mitigate this uncertainty by fine-

tuning the GCM/RCM outputs through a process called bias correction. Bias correction is needed 
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to remove bias between model and observations over the region of study (Minville et al. 2008). 

Two methods commonly used in the correction of biases include (i) the delta approach and (ii) 

the scaling approach. 

The Delta Approach 

The delta approach often referred to as “delta change” or “change factor” involves the 

modification of observed historical time-series by adding the difference between future and 

actual climate simulated by the climate model. The delta change method has been widely used to 

improve the usability of climate model projections in various hydrological climate change impact 

studies. Kienzle et al. (2012) estimated the impacts of climate change on water yield, streamflow 

extremes and regimes in a Canadian watershed. The delta change method was employed to 

downscale the GCM outputs. Projected monthly changes in air-temperature and precipitation 

were used to perturb a 30-year historical climate record. Results showed that not only did the 

precipitation estimates significantly affect simulation response, they also produced diverse future 

precipitation projections in terms of magnitude and directions. It was concluded that certain 

uncertainty still exist with respect to having better spatially distributed climate data, as the delta 

method assumed that spatial pattern of the present climate remain unchanged in the future. 

Likewise, Arnell (2003) applied the delta change method to correct GCM outputs in his 

assessment study carried out in Britain. Percentage changes in hydroclimatological variables 

such as precipitation, temperature and potential evapotranspiration were used to perturb the 

baseline time-series. Results showed that although it was easier to use the delta method to alter 

the baseline climate time-series, it was rather more difficult to alter the relative variability of the 

time-series. Limbrick et al. (2000) and Graham et al. (2007) also reported similar results with 

respect to the delta approach.  

Results from past studies provides evidence of limitations in the delta approach, especially 

as it concerns better representation of spatially distributed climate data or variability across 

future climates. However, the degree of uncertainty inherent in the use of delta approach is 

considered to be small enough to be dealt with by the hydrological model (Chen et al. 2011). 

Furthermore, various researchers (Diaz-Nieto and Wilby 2005; Akhtar et al. 2008; Senatore et al. 

2011) have employed the delta change method and have found it to be very efficient, as resultant 

scenarios from its adoption incorporates details of the station records as well as the areal average 

climate change of the climate model grid-boxes. 

The Scaling Approach 

The second approach employed for the purpose of bias correction is the scaling approach. This 

method involves the use of scaling factors to adjust the outputs of climate models so as to make 

them statistically comparable to observations, in terms of mean and standard deviation. Graham 

et al. (2011) applied the distributed-based scaling (DBS) approach developed by Yang et al. 

(2010) to adjust all RCM projections for the purpose of bias correction. Using the DBS 

approach, correction factors were derived by comparing the RCM output with observed climate 

variables in the control period and then applied to the RCM outputs for the future period. Results 

of the RCM projections which were downscaled using the scaling method were compared to that 

of statistically downscaled (SD) projections. Results showed that the scaling method produced 

relatively smaller deviations in present climate compared to SD projections. The SD projections 

were expected to fall relatively close to observed values without the need for additional bias 
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correction techniques due to the dependence of the SD technique on observations of the present 

climate. It was concluded that the DBS bias correction technique was effective at ensuring that 

RCM projections fall relatively close to observations statistically. Results from Chen et al. 

(2011) was in line with the submission of Graham et al. (2011) as simulations carried out using a 

local intensity scaling method developed by Schmidli et al. (2006) were highly correlated to the 

observed climatological time-series. The positive influence of the scaling approach in modelling 

of hydrological processes have also been reported in various climate change impact studies 

(Olsson et al. 2011; Il-Won et al. 2012). 

Generally, it is clear that despite the improvements in RCMs, their outputs are still too 

coarse to adoption in some applications such as in small catchments which may require local and 

site-specific climate scenarios (Chen et al. 2011). Bias correction methods will help reduce 

shortcomings inherent in the downscaling technique, thereby enhancing the reliability on future 

hydroclimatological projections. Notwithstanding, the overall uncertainty in this phase can be 

further reduced by carrying out comparative studies between different bias correction methods so 

as to ascertain their effects on future projections. 

Uncertainty Linked To Statistical Downscaling Technique 

The use of statistical downscaling (SD) technique involves the development of quantitative 

relationships between the large scale features of GCM (predictors) and regional scale variables 

(predictands). This is making the regional scale variables a function of the large-scale variables 

from GCMs. Correlation consistencies in frequency distribution, annual and inter-annual 

variability and persistence of the main climate characteristics are usually considered in statistical 

downscaling. SD has earned wide recognition due to its less computational demand and ability to 

provide information on specific sites (which is critical to climate change studies). It has been 

employed for the purpose of downscaling GCM outputs by many researchers. However, the 

major limitation of statistical downscaling which brings about some degree of uncertainty is that 

their basic assumption is not verifiable; as the statistical relationships developed for the present 

day climate may also hold under the different forcing conditions of possible future climate 

(Wilby et al. 2004). Statistical downscaling techniques have generally been classified into three 

main categories, based on the techniques used, namely: (i) Transfer function approach (ii) 

weather typing and (iii) stochastic weather generators. 

Transfer Function Approach 

Transfer function approach involves the direct quantification of the relationship between a 

predictand and a set of predictor variables (Giorgi et al. 2001). These relationships can either be 

statistically linear or non-linear. The transfer function approach is majorly a regression based 

downscaling method. Methods such as linear and non-linear regression, canonical correlation 

analysis, artificial neural networks (ANN), and support vector machines (SVM), etc. have been 

employed to derive predictor-predictand relationships. The major advantage of transfer function 

approach is their relative simplicity in application, as ensembles of high resolution climate 

scenarios may be produced, thereby increasing its versatility. Application of transfer function 

method in climate change impact studiesmay be found in Cannon and Whitfield (2002); Tripathi 

et al. (2006); Bürger (2009); Vasiliades et al. (2009); and Chen et al. (2011). 
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A major drawback to the transfer function method is the possibility of an unstable 

relationship between the predictors and predictands which may result to under-prediction of the 

observed variance (Fung et al. 2011). Therefore, there is a need for                                                                

the model be constrained in order to preserve local co-variance and also the artificial inflation of 

the variance of the downscaled predictand. Although, this may translate into the production of 

additional white noise for better match observations, it could however lead to degradation of 

other aspects of the time-series such as its autocorrelation structure. 

Weather Typing 

Weather typing involves the classification of regional climate into a number of discrete weather 

types and circulation patterns, and relating it to different classes of atmospheric circulation. The 

weather classes may be defined subjectively as obtainable in the lamb weather types (LWT) in 

the UK and European Grosswetterlagen (GWL) (Kyselý and Huth 2006). It may also be defined 

objectively by using computer-assisted techniques such as fuzzy clustering (Bárdossy et al. 

2002) and principal component analysis (PCA) (Sheridan 2002). In addition, a combination of 

both the subjective and objective weather classes can be implemented to form a hybrid version as 

applied in the study conducted by Ghosh and Mujumdar (2008). 

The advantages of the weather typing approach include its ability to downscale a wide range 

of hydroclimatological variables and interpret trends in extreme events such as floods and 

droughts. It also produces high positive correlation between regional scale variables and large 

scale variables, even for non-linear scenarios. The fundamental assumption in weather typing is 

that the relationships between weather type and regional climate variables will continue to be 

valid under future forcing. However, the major drawback is that the assumption may not hold, as 

the occurrence of inconsistencies in the relationship between weather type and regional climate 

is inevitable. 

Stochastic Weather Generators 

Stochastic weather generators are regarded as complex random number generators designed to 

reproduce statistical features of a local variable. Weather generators have the ability to produce 

weather time series in regions of data sparsity, by interpolating observed data, while also 

adjusting its parameters according to future changes in mean climate and variability. The 

assumption is that statistical correlations between climatic variables derived from observed data 

are valid under a change climate. 

Markov chain models have been widely used in weather generators to simulate precipitation 

occurrence for wet-day/dry-day transitions (Fung et al. 2011). These models may be first-order, 

second-order or third-order models (Fowler et al. 2007). Mason (2004) and Dubrovský et al. 

(2004) both employed the higher-order Markov chain models to enhance wet-and-dry spell 

persistence, as parameters were conditioned on specific climate events, rather than weather 

patterns which reduces the ability of the generator to accurately describe persistent and rare 

events. Wilby et al. (2002) developed the statistical downscaling model (SDSM), which is a 

combination of both stochastic weather generator and regression methods and have been found 

useful for downscaling purposes. A new approach developed by Kilsby et al. (2007) involves 

applying change factors to observed weather series and subsequently calibrating the model using 

the perturbed record rather than observations. This method has been seen as an improvement 
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upon the Markov chain method as it produced better representation of variability and extremes 

within the climatic time series (Kilsby et al. 2007).  

In general, weather generators are now being employed for statistical downscaling purposes 

especially in developing countries where they are used for generating artificial climatic series in 

data sparse environments. However, despite their high degree of accuracy, they tend to 

underestimate inter-annual variability (Mason 2004), and may create an ambiguous effect on the 

temporal characteristics of simulated weather (Dubrovský et al. 2004). Moreover, since weather 

generators are conditioned using local climate relationships, they may not be automatically 

applicable in other climates (Fowler et al. 2007). 

Numerous studies have been conducted in which different downscaling and bias correction 

methods have been compared and their inherent uncertainty assessed. An in-depth analysis of 

such uncertainty assessment studies are available from literature (Fowler et al. 2007; Seguí et al. 

2010; Chen et al. 2011; Teutschbein and Seibert 2012). Generally, some degree of uncertainty in 

hydrological modelling of climate change impacts are connected to the choice of downscaling 

technique, especially as it relates to variability and extremes. Various studies have been carried 

out to assess the uncertainty that downscaling techniques pose to hydrological modelling, and the 

importance of making the right choice as regards downscaling technique have been stressed 

(Wood et al. 2004; Im et al. 2010). Considering that each technique has its unique advantages 

and drawbacks, it is therefore necessary to evaluate these techniques on a case by case basis 

depending of the objectives of the study so as to reduce uncertainty levels in climate change 

impact assessments  (Chen et al. 2011). 

Uncertainty Linked To Hydrological Impact Models 

Hydrological models are tools developed to provide a simplified and detailed interpretation of 

complex, dynamic and non-linear processes relating to water resources, thereby providing 

solution to various related problems under different climatic conditions irrespective of location. 

All hydrological models take meteorological parameters as their inputs and transform them to 

create hydrological outputs. Fung et al. (2011) classified hydrological models in terms of their 

theoretical complexities, spatial resolutions, and temporal resolutions. 

In terms of their theoretical complexities, hydrological models can be classified into: 

 

(i) Empirical models: These models are often based on mathematical equations and 

statistical relationships, and are the simplest in terms of application as they only describe the 

behavior of hydroclimatological parameters without taking into account the underlying 

processes. They can be very effective for the specific circumstance for which they were 

developed, as their performance cannot be predicted outside this range (Fung et al. 2011). 

Therefore, they have found limited application for implementation of appropriate model 

components in studies related to climate change impacts on water resources. 

(ii) Physically-based models: These models incorporate laws based on the physics of water 

movement in catchments, and considering that the governing equations are physically-based, 

model parameterization can be achieved by direct measurement of catchment characteristics. 

However, difficulty in model parameterization, complexities in formulation, huge data demand 

and high computational requirement serve as drawbacks to the use of physically-based models 

(Beven 2002; Oyebode et al. 2014a; Oyebode et al. 2014b) 

(iii) Conceptual models: These models are able to capture dominant hydrological processes 

for different parameter set at the appropriate scale with accompanying formulations (Booij 
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2005). They are deliberately configured to portray the behavioral characteristics of the 

catchment, making them effective for assessing the impact of climate change on water 

availability. However, they need to be calibrated as it is impossible to derive the model 

parameters directly from field measurements. 

 

In terms of their spatial resolutions hydrological models may be (i) distributed model, which 

breaks the hydrological system down into smaller geographical units and produces results for 

many variables for each of the units; (ii) lumped model, which represents the entire hydrological 

system as a single entity; and (iii) semi-distributed models, which falls in between the lumped 

and distributed models. Their configuration is obtained by breaking the catchment under study 

into a number of discrete units with similar characteristics (Fung et al. 2011). 

 Hydrological models can also be classified according to their temporal resolution, as the 

modelling of time-series of hydrological response to climatic variables is of high importance. 

Therefore, the appropriate temporal resolution of a hydrological model must be selected in a 

manner that will give a good representation of the system being modeled. The choice of time 

steps could be daily, weekly, monthly or yearly. The choice of hydrological model for any 

specific hydrological problem depends on availability of base hydrological data, availability of 

future climate data and the complexity of the physical hydrological system being modeled. 

Considering the aforementioned categories of hydrological models, the major source of 

uncertainty remains as to what renders a hydrological model appropriate for selection, in terms 

of process representations and the manner by which the major state variables and outputs are 

relevant to simulating responses to projected future climates are computed (Schulze 2005). 

Generally, the choice of hydrological model for the purpose of climate change impact 

modelling is of high importance so as to ensure the development and adoption of models with 

structure that would be sufficiently detailed enough to capture principal hydrological processes 

and their natural variability (Booij 2005). Furthermore, the ability of hydrological models to 

obtain appropriate spatial scale and carry out simulations at different time-steps is crucial. The 

choice of hydrological models for climate change impact assessment is also influenced by the 

positive experience recorded in terms of previous applications under different climatological and 

geographical regions (Bergstrom et al. 2001). Finally, the need to obtain a good compromise 

between simplicity on one hand, and firm physical basis on the other hand remain key in order to 

reduce uncertainty in climate change impact studies (Booij 2005). 

Uncertainty associated with the use of hydrological models can be classified into two (2) 

categories; uncertainty due to model structure and uncertainty due to model parameterization. 

Uncertainty Due To Model Structure 

This uncertainty relates to system identification which involves the selection of appropriate 

structures for the representation of a real system. It allows for definition of sets of proper 

mapping via equations that represent the relationships between the model inputs, parameters, 

states and outputs. Uncertainty in model structure may arise during model development as a 

result of the initialization of quantitative diagnostic measures, which may also be attributed to 

expert knowledge and subjectivity (Liu and Gupta 2007). Model structure uncertainty includes a 

wide range of choices and assumptions made by the modeler either explicitly or implicitly during 

model development or implementation. 

Butts et al. (2004) examined the impact of model structure error and complexity on model 

performance and model uncertainty using models with different structures in the Blue River 
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catchment, United States. Results found large variations in model performance amongst the 

selected model structures, with model performance showcasing some degree of sensitivity to 

model structure. It was found that models with distributed routing and distributed rainfall values 

produced higher simulation accuracies and predictive capabilities, while those with spatially 

distributed catchment parameters performed better than others during calibration although 

outperformed by other models during validation. More recently, Montanari and Di Baldassarre 

(2013) conducted an investigative study on how appropriate choice of model complexity could 

impact on observation uncertainty. The impact of data error on hydrological model projections 

was examined. Results were in close agreement with the submission of Butts et al. (2004), as it 

was found that model structural uncertainty induces a feedback on the impact of data errors. 

These feedbacks were found to be more significant in models with simpler structures. Jiang et al. 

(2007) employed six monthly water balance models to evaluate hydrologic model structural 

uncertainty. Large differences in projected results were observed across hydrological models of 

different structural makeup. 

Therefore, the model structure should be considered as an important factor in making 

appropriate selection of hydrological model in climate change impact assessment studies. An 

understanding of the processes captured therein would be of strategic importance towards 

upgrading their structures. In addition, the adoption of multiple models with different structural 

characteristics may help improve the overall accuracy of hydrological simulations, thereby 

reducing uncertainty. 

 Uncertainty Due To Model Parameterization 

The impacts of climate change have been found to be highly sensitive to model parameterization 

in some regions (Jiang et al. 2007; Booij et al. 2011; Poulin et al. 2011; Il-Won et al. 2012). 

Uncertainty occurs in the method employed and in the ability of the model to estimate 

hydrological parameters of real systems. Errors in the estimates of parameter values can translate 

into huge errors in the model outputs (Liu and Gupta 2007). These errors can occur at any of the 

stages of parameter estimation. 

Booij (2005) highlighted the steps involved in parameter estimation in hydrological models. 

These steps include the determination of key parameters for calibration, sensitivity analysis with 

key parameters to obtain model optimal parameter set, and regionalization of the parameters to 

derive parameters for sub-basins. Furthermore, it involves the use of relationships between key 

parameters and river basin characteristics such as land use and soil type to access values for 

neighbouring sub-basins. Errors that occur in any of these stages can influence the results of the 

study, thereby generating uncertainty in future projections. 

Poulin et al. (2011) carried out an assessment of hydrological model uncertainty by 

comparatively investigating the performance of a lumped conceptual model and a distributed 

physically-based model in a snow-dominated watershed. Parameter uncertainty was considered 

from the perspective of equifinality – a property of having several different parameter sets 

associating with the same optimal measure of tendency. Results showed that parameter 

uncertainty remained stable under future conditions, as the methodology employed in estimating 

the parameter sets enhanced the stability of future climate. Further investigations on snowless 

river basin were however suggested. Results from the study found that uncertainty due to model 

structure were more pronounced when compared to parameter uncertainty. 

Il-Won et al. (2012)’s study focused on uncertainty modelling of two hydrologically distinct 

river basins; a snow-dominated and rainfall-dominated basin. The impacts of climate change on 
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seasonal mean and extreme flow were examined in the two river basins using a precipitation 

runoff modelling system (PRSM). It was found that hydrological uncertainty varied significantly 

between the two basins given their climate regimes, as changes in run-off over different time-

slices varied signficantly both in terms of season and basin. It was observed that change in winter 

runoff in the snow-dominated basin was more dependent on the hydrologic parameters. On the 

other hand, the influence of model parameterization on the rainfall-dominated basin were not 

significant. The results indicate that hydrological distinct river basins may have different ranges 

of model parameterization uncertainty. Bae et al. (2011) analyzed hydrological uncertainty under 

future climate by running of near optimal parameter sets for two hydrological models. Results 

indicated that major uncertainty sources may vary depending on the location of basins due to 

different hydroclimatological variablity. Hence, interpretation of climate change impact 

assessment results in extreme regions may require more understanding and carefulness in order 

for the results to be taken as reliable (Najafi et al. 2011). 

Considering the results of uncertainty assessment studies conducted to determine the 

influence of hydrological models, a high degree of uncertainty can be attributed to the use of 

hydrological models in climate change impact studies. Therefore, making the right selection of 

hydrological models with particular reference to their structure and parameterization will not 

only increase the robustness of hydrological modelling tools, but also the veracity of their 

resultant projections. This would also positively influence interpretatbility of projections, thereby 

translating to meaningful progress for the field of water resource systems modelling. 

Conclusion 

An extensive review of climate change impact modelling techniques and their inherent sources 

of uncertainty has been presented in this paper. The major sources of uncertainty in identified 

and discussed include (i) uncertainty linked to GCMs which include future emissions of 

greenhouse gases and their interpretations, GCM process descriptions, spatial and temporal 

resolutions as well as GCM initialization; (ii) uncertainty in the representation of climatological 

variables at regional and local scales including the choice of downscaling and bias correction 

methods and (iii) uncertainty linked to the structure and parameterization of hydrological models 

used for climate change impact assessment. 

Results from a wide range of uncertainty modelling studies have found uncertainty linked to 

GCMs to be the most significant and pronounced amongst other sources of uncertainty; with a 

substantial portion of GCM-based uncertainty attributed to their structural configuration. In 

addition, traces of large-scale features of GCMs remain evident throughout subsequent phases of 

the climate change modelling process. Downscaling and bias correction-related uncertainty must 

also be given more attention so as to achieve more accurate and reliable estimation of climate 

change impacts. Inasmuch as the choice of downscaling technique is climate specific, there is a 

need for evaluation of the techniques on a case by case basis depending on the objectives of the 

study in order to achieve better results. There is high possibility that the adoption of multi-

downscaling techniques for uncertainty estimation in hydrologic studies would facilitate the 

accuracy of future projections. In like manner, efforts should be directed towards enhancing the 

structural and parameter identification features in hydrological models so as to allow for good 

representation of internal processes across wide range of river basins. It is however important to 

note that appropriate choice of hydrological models to suit a specific climate remains crucial to 

achieving accurate and reliable of hydrological projections. 
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Finally, there is a need for further research aimed at identifying, analyzing and reducing 

uncertainty associated with climate change impact modelling on water resource systems so as to 

improve the performance of developed models; by ensuring better predictive accuracy and 

reliability. This would assist water managers and other stakeholders in formulating policies and 

strategies which will translate into effective management of available water resources especially 

in this era of climate variability. 
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