^{1}and Osama Y. Mahmood Al-Rawi

^{2}

^{1}University of sulaimani, Iraq

^{2}Gulf University, Bahrain

In this work, distribution system load flow analysis is formulated and tested for fundamental steadystate and harmonics power flow. For the steady-state analysis, a novel power flow formulation method for the general multiphase balanced and/or unbalanced radial distribution systems is presented. The special topology of the power distribution system has been fully exploited to facilitate obtaining a direct solution using the graph theory. Only one developed matrix used in conjunction with simple standard formulation is enough to obtain the power flow solution. This matrix is the branch-path incident matrix. A feature of using this method is that it significantly reduces the number of power flow equations, as compared to conventional methods, hence very low computation time and memory storage. The presence of nonlinear loads in the power system causes the circulation of harmonics currents in the system, leading to harmonics voltage drops. The harmonics flow analysis in this paper, uses the network techniques in conjunction with graph theory resulting in a powerful algorithm for nonlinear load flow analysis. Six pulse converters model were used to represent the nonlinear load. Two MATLAB programs have been built and used to solve for the load flow solution of standard test systems in both steady-state and harmonics cases. The results of the distribution system cases studies are presented and shows a very good resemblance with a standard results.